# Mathematical foundations of Infinite-Dim Statistical models chap. 3 Empirical Processes (3.1.1 ~3.1.2) 

Presented by Jiin Seo

September 21, 2018

## Outline

3.1.1 Definitions and Overview
3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables

## Outline

3.1.1 Definitions and Overview

### 3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables

### 3.1.1 Definitions and Overview

- This chapter develops empirical process theory with an emphasis on finite sample sizes.


### 3.1.1 Definitions and Overview

Let $(S, \mathcal{S}, P)$ be a prob. space $X_{i}, i \in \mathbf{N}$, be the coordinate ftns of the infinite product prob. space $(\boldsymbol{\Omega}, \boldsymbol{\Sigma}, \operatorname{Pr}):=\left(S^{\mathbb{N}}, \mathcal{S}^{\mathbb{N}}, P^{\mathbb{N}}\right), X_{i}: S^{\mathbb{N}} \mapsto \mathcal{S}$ which are i.i.d. $S$-valued r.v.s with law $P$.

Def. (Empirical Measure) The empirical measure corresponding to the 'observations' $X_{1}, \cdots, X_{n}, \forall n \in \mathbb{N}$, is defined as the random discrete probability measure

$$
\begin{equation*}
P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta x_{i}, \tag{3.1}
\end{equation*}
$$

where $\delta_{x}$ is Dirac measure at $x$.

### 3.1.1 Definitions and Overview

Notations

- $\mathcal{Q} f=\mathcal{Q}(f)=\int_{\Omega} f d \mathcal{Q}$ : integral of $f$ w.r.t $\mathcal{Q}$
- Empirical process indexed by $\mathcal{F}$ :

Let $\mathcal{F}$ be a collection of P-integrable ftns $f: S \mapsto \mathbb{R}$, usually infinite. For any such class of ftns $\mathcal{F}$, the empirical measure defines a stochastic process

$$
\begin{equation*}
f \mapsto P_{n} f, f \in \mathcal{F} . \tag{3.2}
\end{equation*}
$$

- Empirical process for the centred and normalised process :

$$
\begin{equation*}
f \mapsto \nu_{n}(f):=\sqrt{n}\left(P_{n} f-P f\right), f \in \mathcal{F} \tag{3.3}
\end{equation*}
$$

### 3.1.1 Definitions and Overview

Goal of empirical process theory is

- To study the properties of the approximation of $P f$ by $P_{n} f$, uniformly in $\mathcal{F}$
- To obtain both probability estimates for the random quantities

$$
\left|\left|P_{n}-P \|_{\mathcal{F}}:=\sup _{f \in \mathcal{F}}\right| P_{n} f-P f\right|
$$

and probabilistic limit thms for the processes $\left\{\left(P_{n}-P\right)(f): f \in \mathcal{F}\right\}$

### 3.1.1 Definitions and Overview

Main Questions

- 1) Concentration of $\left\|P_{n}-P\right\|_{\mathcal{F}}$ about its mean $\Rightarrow$ Talagrand's inequality
- 2) Estimation for $E\left\|P_{n}-P\right\|_{\mathcal{F}} \Rightarrow$ bracketing, Vapnik-Cervonenkis classes of functions
- 3) Limit theorems: L.L.N. and C.L.T.
- Inequalities
- Exponential Inequalities for sums of centred bdd. indep. random variables and and the associated Maximal Inequalities.
- Levy's inequality and Hoffmann-Jorgensen's Inequality
- Randomisation/Symmetrisation Inequalities


## Outline

### 3.1.1 Definitions and Overview

3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables

### 3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables

- $\xi_{n, i}, i \in \mathbb{N}$ : indep. centred real random variables.
- Tail probabilities of $S_{n}=\sum_{i=1}^{n} \xi_{n, i}$ are similar to those of Poisson r.v. and normal variable.
- Chebyshev's inequality

$$
\operatorname{Pr}\left\{\left|S_{n}\right| \geq t\right\} \leq \frac{\sum_{i=1}^{n} E \xi_{n, i}^{2}}{t^{2}}, t>0
$$

- Construction exponential inequalities for $S_{n}$
- m.g.f. $\rightarrow$ applying Markov's inequality to $e^{\lambda S_{n}}$
- Types of inequalities when the variables $\xi_{n, i}$ are bounded:
- the range of the variable
- variance into account
3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables

Lemma 3.1.1 Let $X$ be a centred r.v. taking values in $[a, b]$ for some $-\infty<a<0 \leq b<\infty$. Then, $\forall \lambda>0$, setting $L(\lambda):=\log E e^{\lambda X}$, we have

$$
\begin{equation*}
L(0)=L^{\prime}(0)=0, L^{\prime \prime}(\lambda) \leq(b-a)^{2} / 4 \tag{3.6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
E e^{\lambda X} \leq e^{\lambda^{2}(b-a)^{2} / 8} \tag{3.7}
\end{equation*}
$$

### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesTheorem 3.1.2 ( Hoeffding's inequality) Let $X_{i}$ be a indep. centred r.v. taking values taking values, respectively, in [ $a_{i}, b_{i}$ ] for some $-\infty<a_{i}<0 \leq b_{i}<\infty, i=1, \cdots, n, \forall n \in \mathbb{N}$, and let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then, $\forall \lambda>0$,

$$
\begin{equation*}
E e^{\lambda S_{n}} \leq e^{\lambda^{2} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} / 8} \tag{3.8}
\end{equation*}
$$

and $\forall t \geq 0$,

$$
\begin{align*}
\operatorname{Pr}\left\{S_{n} \geq t\right\} & \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) \\
\operatorname{Pr}\left\{S_{n} \leq-t\right\} & \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) \tag{3.9}
\end{align*}
$$

### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesProof of Theorem 3.1.2 By Lemma 3.1.1 and independence,

$$
E e^{\lambda S_{n}}=\prod_{i=1}^{n} E e^{\lambda X_{i}} \leq e^{\lambda^{2} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} / 8} .
$$

We then have, by Markov's inequality,

$$
\operatorname{Pr}\left\{S_{n} \geq t\right\}=\operatorname{Pr}\left\{e^{\lambda S_{n}} \geq e^{\lambda t}\right\} \leq E e^{\lambda S_{n}} / e^{\lambda t} \leq \exp \left(\lambda^{2} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} / 8-\lambda t\right)
$$

This bound is smallest for $\lambda=4 t / \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}$, which gives the first inequality in (3.9). The second inequality follows by applying the first to $-X_{i}$.

### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesTheorem 3.1.5 Let $X$ be a centred r.v. taking value s.t $|X| \leq c$ a.s., for some $c<\infty$, and $E X^{2}=\sigma^{2}$. Then $\forall \lambda>0$,

$$
\begin{equation*}
E e^{\lambda X} \leq \exp \left(-\frac{\sigma^{2}}{c^{2}}\left(e^{\lambda c}-1-\lambda c\right)\right), \tag{3.11}
\end{equation*}
$$

As a consequence, if $X_{i}, 1 \leq i \leq n<\infty$, are centred, indep. and a.s. bdd by $c<\infty$ in absolute value, then setting

$$
\begin{equation*}
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} E X_{i}^{2} \tag{3.12}
\end{equation*}
$$

and $S_{n}=\sum_{i=1}^{n} X_{i}$, we have,$\forall \lambda>0$.

$$
\begin{equation*}
E e^{\lambda S_{n}} \leq \exp \left(\frac{n \sigma^{2}}{c^{2}}\left(e^{\lambda c}-1-\lambda c\right)\right), \tag{3.13}
\end{equation*}
$$

and the same inequality holds for $-S_{n}$.

### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesPrrof of Theorem 3.1.5 Since $E X=0$, expansion of the exponential gives

$$
E e^{\lambda X}=1+\sum_{k=2}^{\infty} \frac{\lambda^{k} E X^{k}}{k!} \leq \exp \left(\sum_{k=2}^{\infty} \frac{\lambda^{k} E X^{k}}{k!}\right),
$$

whereas, since $\left|E X^{k}\right| \leq c^{k-2} \sigma^{2}, \forall k \geq 2$, this exponent can be bounded by

$$
\left|\sum_{k=2}^{\infty} \frac{\lambda^{k} E X^{k}}{k!}\right| \leq \lambda^{2} \sigma^{2} \sum_{k=2}^{\infty} \frac{(\lambda c)^{k-2}}{k!}=\frac{\sigma^{2}}{c^{2}} \sum_{k=2}^{\infty} \frac{(\lambda c)^{k}}{k!}=\frac{\sigma^{2}}{c^{2}}\left(e^{\lambda c}-1-\lambda c\right) .
$$

This gives inequality (3.11). Inequality (3.13) follows from (3.11) by independence. The foregoing also applies to $Y_{i}=-X_{i}$.
3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables
$\phi(x):=e^{-x}-1+x$, for $x \in \mathbb{R}$, and
$h_{1}(x):=(1+x) \log (1-x)-x$, for $x \geq 0$.
Proposition 3.1.6 Let $Z$ be a r.v whose m.g.f satisfies the bound

$$
E e^{\lambda Z} \leq \exp \left(\nu\left(e^{\lambda}-1-\lambda\right)\right), \lambda>0,
$$

for some $\nu>0$. Then, $\forall t \geq 0$,
$\operatorname{Pr}\{Z \geq t\} \leq \exp \left(-\nu h_{1}(t / \nu)\right) \leq \exp \left(-\frac{3 t}{4} \log \left(1+\frac{2 t}{3 \nu}\right)\right) \leq \exp \left(-\frac{t^{2}}{2 \nu+2 t / 3}\right)$
and

$$
\operatorname{Pr}\{Z \geq \sqrt{2 \nu x}+x / 3\} \leq e^{-x}, x \geq 0
$$

### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesTheorem 3.1.7( Inequalities of Bennett, Prokhorov and Bernstein) Let $X_{i}, 1 \leq i \leq n$, be indep. centred r.v. a.s. bdd by $c<\infty$ in absolute value. Set $\sigma^{2}=1 / n \sum_{i=1}^{n} E X_{i}^{2}$ and $S_{n}=\sum_{i=1}^{n} X_{i}$. Then, $\forall u \geq 0$,

$$
\begin{align*}
\operatorname{Pr}\left\{S_{n} \geq u\right\} & \leq \exp \left(-\frac{n \sigma^{2}}{c^{2}} h_{1}\left(\frac{u c}{n \sigma^{2}}\right)\right) \\
& \leq \exp \left(-\frac{3 u}{4 c} \log \left(1+\frac{2 u c}{3 n \sigma^{2}}\right)\right) \\
& \leq \exp \left(-\frac{u^{2}}{2 n \sigma^{2}+2 c u / 3}\right) \tag{3.23}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left\{S_{n} \geq \sqrt{2 n \sigma^{2} u}+\frac{c u}{3}\right\} \leq e^{-u} \tag{3.24}
\end{equation*}
$$

where $h_{1}$ is as defined in (3.14), and the same inequalities hold for $\operatorname{Pr}\left\{S_{n}<-u\right\}$.

### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesProposition 3.1.8 (Bernstein's inequality) Let $X_{i}, 1 \leq i \leq n$, be centred indep. random variables s.t., $\forall k \geq 2$ and all $1 \leq i \leq n$,

$$
\begin{equation*}
E\left|X_{i}\right|^{k} \leq \frac{k!}{2} \sigma_{i}^{2} c^{k-1} \tag{3.25}
\end{equation*}
$$

and set $\sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}, S_{n}=\sum_{i=1}^{n} X_{i}$. Then

$$
\begin{equation*}
\operatorname{Pr}\left\{S_{n} \geq t\right\} \leq \exp \left(-\frac{t^{2}}{2 \sigma^{2}+2 c t}\right), t \geq 0 \tag{3.26}
\end{equation*}
$$

### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesProof of Proposition 3.1.8 Assuming that $c|\lambda|<1$, the moment-growth hypothesis implies that, for $1 \leq k \leq n$,

$$
E e^{\lambda X_{k}} \leq 1+\frac{\sigma_{k}^{2}}{2} \sum_{i=2}^{\infty}|\lambda|^{k} c^{k-2}=1+\frac{\lambda^{2} \sigma_{k}^{2}}{2(1-|\lambda| c)} \leq e^{\lambda^{2} \sigma_{k}^{2} /(2-2 c|\lambda|)},
$$

which, by independence and the exponential Chebyshev's inequality, implies that

$$
\operatorname{Pr}\left\{S_{n} \geq t\right\} \leq \frac{E e^{\lambda S_{n}}}{e^{\lambda t}} \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2-2 c|\lambda|}-\lambda t\right)
$$

The result obtains by taking $\lambda=t /\left(\sigma^{2}+c t\right)$.

### 3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables

- Inequalities of Hoeffding, Bennet, Bernstein and Prohorov also hold for the maximum of the partial-sums $\max _{k \leq n} S_{k}$ by virtue of Doob's submartingale inequality.
- Given a symmetric matrix $A$ with eigenvalues $\lambda_{i}$, its Hilbert-Schmidt norm $\|A\|_{H S}$ is defined as $\|A\|_{H S}^{2}=\sum \lambda_{i}^{2}$.
$\|A\|$ : maximum of its eigenvalues


### 3.1.2 Exponential and Maximal Inequalities for Sums of

 Independent Centred and Bounded Real Random VariablesTheorem 3.1.9(Hanson-Wright's inequality ) Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be a symm. matrix with all its diagonal terms $a_{i i}$ equal to zero, let $g_{i}, i=1, \cdots, n$, be indep. standard normal variables and set

$$
X=\sum_{i, j} a_{i j} g_{i} g_{j}=2 \sum_{i<j} a_{i} j g_{i} g_{j} .
$$

Alternatively, let $A$ be a diagonal matrix with eigenvalues $\tau_{i}$, and set

$$
X=\sum_{i} \tau_{i}\left(g_{i}^{2}-1\right),
$$

$g_{i}$ indep. $N(0,1)$, as earlier. Then both random variables satisfy
$E e^{\lambda X} \leq e^{\|A\|_{H S}^{2} \lambda^{2} /(1-2 \lambda\|A\|)}=e \varphi^{2\|A\|_{H S}^{2} 2\|A\|}(\lambda)$, for $0<\lambda<1 / 2\|A\|$.
Consequently, for $t \geq 0$,
$\operatorname{Pr}\{X>t\} \leq e^{-t^{2} / 4\left(\|A\|_{H S}^{2}+\|A\| t\right)} \operatorname{or} \operatorname{Pr}\left\{X \geq \sqrt{4\|A\|_{H S}^{2} t}+2\|A\| t\right\} \leq e^{-t}$,

### 3.1.2 Exponential and Maximal Inequalities for Sums of Independent Centred and Bounded Real Random Variables

Finally, we see that control of m.g.f. of a collection of r.v. translates into control of the expected value of their maximum:

Theorem 3.1.10 ) (a) Let $X_{i}, i=1, \cdots, N$, be random variables s.t. $E e^{\lambda X_{i}} \leq e^{\lambda^{2} \sigma_{i}^{2} / 2}$, for $0 \leq \sigma_{i}<\infty \forall \lambda>0$ and $i \leq N$. Then

$$
\begin{equation*}
E \max _{i \leq N} X_{i} \leq \sqrt{2 \log N} \max _{i} \sigma_{i} . \tag{3.31}
\end{equation*}
$$

(b) Let $X_{i}$ be random variables s.t $E e^{\lambda X_{i}} \leq e^{\varphi_{\nu_{i}, c}(\lambda)}$ for $0<\lambda \leq 1 / c$ and $i=1, \cdots, N$, where $\nu_{i}, c>0$ and $\varphi_{\nu_{i}, c}$ is defined in (3.21). In particular, by (3.22), this holds with $c=1 / 3$ if $E e^{\lambda X_{i}} \leq \exp \left(\nu_{i}\left(e^{\lambda}-1-\lambda\right)\right)$. Then

$$
\begin{equation*}
E \max _{i \leq N} X_{i} \leq \sqrt{2 \nu \log N}+c \log N \tag{3.32}
\end{equation*}
$$

where $\nu=\max _{i \leq N} \nu_{i}$.

