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3.1.1 Definitions and Overview

• This chapter develops empirical process theory with an emphasis on
finite sample sizes.



3.1.1 Definitions and Overview

Let (S ,S,P) be a prob. space Xi , i ∈ N, be the coordinate ftns of the
infinite product prob. space (Ω,Σ,Pr) := (SN,SN,PN),Xi : SN 7→ S
which are i.i.d. S-valued r.v.s with law P.

Def. (Empirical Measure) The empirical measure corresponding to the
‘observations’ X1, · · · ,Xn, ∀n ∈ N , is defined as the random discrete
probability measure

Pn =
1

n

n∑
i=1

δXi
, (3.1)

where δx is Dirac measure at x .



3.1.1 Definitions and Overview

Notations

• Qf = Q(f ) =
∫
Ω fdQ : integral of f w.r.t Q

• Empirical process indexed by F :
Let F be a collection of P-integrable ftns f : S 7→ R, usually infinite.
For any such class of ftns F , the empirical measure defines a
stochastic process

f 7→ Pnf , f ∈ F . (3.2)

• Empirical process for the centred and normalised process :

f 7→ νn(f ) :=
√
n(Pnf − Pf ), f ∈ F (3.3)

,



3.1.1 Definitions and Overview

Goal of empirical process theory is

• To study the properties of the approximation of Pf by Pnf ,
uniformly in F

• To obtain both probability estimates for the random quantities

||Pn − P||F := sup
f ∈F
|Pnf − Pf |

and probabilistic limit thms for the processes {(Pn − P)(f ) : f ∈ F}



3.1.1 Definitions and Overview

Main Questions

• 1) Concentration of ||Pn − P||F about its mean ⇒ Talagrand’s
inequality

• 2) Estimation for E ||Pn − P||F ⇒ bracketing , Vapnik-Cervonenkis
classes of functions

• 3) Limit theorems: L.L.N. and C.L.T.

• Inequalities
- Exponential Inequalities for sums of centred bdd. indep. random
variables and and the associated Maximal Inequalities.
- Levy’s inequality and Hoffmann-Jorgensen’s Inequality
- Randomisation/Symmetrisation Inequalities
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3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

• ξn,i , i ∈ N : indep. centred real random variables.

• Tail probabilities of Sn =
∑n

i=1 ξn,i are similar to those of Poisson r.v.
and normal variable.

• Chebyshev’s inequality

Pr{|Sn| ≥ t} ≤
∑n

i=1 Eξ
2
n,i

t2
, t > 0

• Construction exponential inequalities for Sn
- m.g.f. → applying Markov’s inequality to eλSn

• Types of inequalities when the variables ξn,i are bounded :
- the range of the variable
- variance into account



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Lemma 3.1.1 Let X be a centred r.v. taking values in [a, b] for some
−∞ < a < 0 ≤ b <∞ . Then, ∀λ > 0 , setting L(λ) := logEeλX , we
have

L(0) = L′(0) = 0, L′′(λ) ≤ (b − a)2/4 (3.6)

and hence
EeλX ≤ eλ

2(b−a)2/8 (3.7)



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Theorem 3.1.2 ( Hoeffding’s inequality) Let Xi be a indep. centred r.v.
taking values taking values, respectively, in [ai , bi ] for some
−∞ < ai < 0 ≤ bi <∞, i = 1, · · · , n, ∀n ∈ N, and let Sn =

∑n
i=1 Xi .

Then, ∀λ > 0 ,

EeλSn ≤ eλ
2
∑n

i=1(bi−ai )2/8, (3.8)

and ∀t ≥ 0 ,

Pr{Sn ≥ t} ≤ exp(− 2t2∑n
i=1(bi − ai )2

),

Pr{Sn ≤ −t} ≤ exp(− 2t2∑n
i=1(bi − ai )2

). (3.9)



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Proof of Theorem 3.1.2 By Lemma 3.1.1 and independence,

EeλSn =
n∏

i=1

EeλXi ≤ eλ
2
∑n

i=1(bi−ai )2/8.

We then have, by Markov’s inequality,

Pr{Sn ≥ t} = Pr{eλSn ≥ eλt} ≤ EeλSn/eλt ≤ exp(λ2
n∑

i=1

(bi−ai )2/8−λt).

This bound is smallest for λ = 4t/
∑n

i=1(bi − ai )
2, which gives the first

inequality in (3.9).The second inequality follows by applying the first to
−Xi .



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Theorem 3.1.5 Let X be a centred r.v. taking value s.t |X | ≤ c a.s., for
some c <∞, and EX 2 = σ2. Then ∀λ > 0,

EeλX ≤ exp(−σ
2

c2
(eλc − 1− λc)), (3.11)

As a consequence, if Xi , 1 ≤ i ≤ n <∞, are centred, indep. and a.s. bdd
by c <∞ in absolute value, then setting

σ2 =
1

n

n∑
i=1

EX 2
i (3.12)

and Sn =
∑n

i=1 Xi , we have , ∀λ > 0.

EeλSn ≤ exp(
nσ2

c2
(eλc − 1− λc)), (3.13)

and the same inequality holds for −Sn.



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Prrof of Theorem 3.1.5 Since EX = 0, expansion of the exponential gives

EeλX = 1 +
∞∑
k=2

λkEX k

k!
≤ exp(

∞∑
k=2

λkEX k

k!
),

whereas, since |EX k | ≤ ck−2σ2, ∀k ≥ 2, this exponent can be bounded by

|
∞∑
k=2

λkEX k

k!
| ≤ λ2σ2

∞∑
k=2

(λc)k−2

k!
=
σ2

c2

∞∑
k=2

(λc)k

k!
=
σ2

c2
(eλc − 1− λc).

This gives inequality (3.11). Inequality (3.13) follows from (3.11) by
independence. The foregoing also applies to Yi = −Xi .



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

φ(x) := e−x − 1 + x , for x ∈ R, and
h1(x) := (1 + x)log(1− x)− x , for x ≥ 0. (3.14)

Proposition 3.1.6 Let Z be a r.v whose m.g.f satisfies the bound

EeλZ ≤ exp(ν(eλ − 1− λ)), λ > 0,

for some ν > 0. Then, ∀t ≥ 0,

Pr{Z ≥ t} ≤ exp(−νh1(t/ν)) ≤ exp(−3t

4
log(1+

2t

3ν
)) ≤ exp(− t2

2ν + 2t/3
)

and
Pr{Z ≥

√
2νx + x/3} ≤ e−x , x ≥ 0



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Theorem 3.1.7( Inequalities of Bennett, Prokhorov and Bernstein) Let
Xi , 1 ≤ i ≤ n , be indep. centred r.v. a.s. bdd by c <∞ in absolute value.
Set σ2 = 1/n

∑n
i=1 EX

2
i and Sn =

∑n
i=1 Xi . Then, ∀u ≥ 0,

Pr{Sn ≥ u} ≤ exp(−nσ2

c2
h1(

uc

nσ2
))

≤ exp(−3u

4c
log(1 +

2uc

3nσ2
))

≤ exp(− u2

2nσ2 + 2cu/3
) (3.23)

and
Pr{Sn ≥

√
2nσ2u +

cu

3
} ≤ e−u (3.24)

where h1 is as defined in (3.14), and the same inequalities hold for
Pr{Sn < −u}.



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Proposition 3.1.8 (Bernstein’s inequality) Let Xi , 1 ≤ i ≤ n , be centred
indep. random variables s.t., ∀k ≥ 2 and all 1 ≤ i ≤ n,

E |Xi |k ≤
k!

2
σ2i c

k−1, (3.25)

and set σ2 =
∑n

i=1 σ
2
i ,Sn =

∑n
i=1 Xi . Then

Pr{Sn ≥ t} ≤ exp(− t2

2σ2 + 2ct
), t ≥ 0 (3.26)



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Proof of Proposition 3.1.8 Assuming that c |λ| < 1, the moment-growth
hypothesis implies that, for 1 ≤ k ≤ n,

EeλXk ≤ 1 +
σ2k
2

∞∑
i=2

|λ|kck−2 = 1 +
λ2σ2k

2(1− |λ|c)
≤ eλ

2σ2
k/(2−2c|λ|),

which, by independence and the exponential Chebyshev’s inequality,
implies that

Pr{Sn ≥ t} ≤ EeλSn

eλt
≤ exp(

λ2σ2

2− 2c|λ|
− λt).

The result obtains by taking λ = t/(σ2 + ct).



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

• Inequalities of Hoeffding, Bennet, Bernstein and Prohorov also hold
for the maximum of the partial-sums maxk≤n Sk by virtue of Doob’s
submartingale inequality.

• Given a symmetric matrix A with eigenvalues λi , its Hilbert-Schmidt
norm ||A||HS is defined as ||A||2HS =

∑
λ2i .

||A|| : maximum of its eigenvalues



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Theorem 3.1.9(Hanson-Wright’s inequality ) Let A = (aij)
n
i ,j=1 be a symm.

matrix with all its diagonal terms aii equal to zero, let gi , i = 1, · · · , n, be
indep. standard normal variables and set

X =
∑
i ,j

aijgigj = 2
∑
i<j

ai jgigj .

Alternatively, let A be a diagonal matrix with eigenvalues τi , and set

X =
∑
i

τi (g
2
i − 1), .

gi indep. N(0, 1) , as earlier. Then both random variables satisfy

EeλX ≤ e ||A||
2
HSλ

2/(1−2λ||A||) = eϕ2||A||2HS2||A||(λ), for0 < λ < 1/2||A||. (3.27)

Consequently, for t ≥ 0,

Pr{X > t} ≤ e−t
2/4(||A||2HS+||A||t)orPr{X ≥

√
4||A||2HS t+2||A||t} ≤ e−t , (3.28)



3.1.2 Exponential and Maximal Inequalities for Sums of
Independent Centred and Bounded Real Random Variables

Finally, we see that control of m.g.f. of a collection of r.v. translates into
control of the expected value of their maximum:

Theorem 3.1.10 ) (a) Let Xi , i = 1, · · · ,N, be random variables s.t.
EeλXi ≤ eλ

2σ2
i /2, for 0 ≤ σi <∞∀λ > 0 and i ≤ N. Then

E max
i≤N

Xi ≤
√

2logN max
i
σi . (3.31)

(b) Let Xi be random variables s.t EeλXi ≤ eϕνi ,c (λ) for 0 < λ ≤ 1/c and
i = 1, · · · ,N, where νi , c > 0 and ϕνi ,c is defined in (3.21). In particular,
by (3.22), this holds with c = 1/3 if EeλXi ≤ exp(νi (e

λ − 1− λ)). Then

E max
i≤N

Xi ≤
√

2νlogN + clogN, (3.32)

where ν = maxi≤N νi .
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